Macroscopic behavior of polar nematic gels and elastomers.
نویسندگان
چکیده
We present the derivation of the macroscopic equations for uniaxial polar nematic gels and elastomers. We include the strain field as well as relative rotations as independent dynamic macroscopic degrees of freedom. As a consequence, special emphasis is laid on possible static and dynamic cross-couplings between these macroscopic degrees of freedom associated with the network, and the other macroscopic degrees of freedom including reorientations of the macroscopic polarization. In particular, we find static and dissipative dynamic cross-couplings between strain fields and relative rotations on one hand and the macroscopic polarization on the other that allow for new possibilities to manipulate polar nematics. To give one example each for the effects of a static and a dissipative cross-coupling: we find that a static electric field applied perpendicularly to the polar preferred direction leads to relative rotations while dynamically relative rotations can lead to transverse electric currents. In addition to a permanent network, we also consider the effect of a transient network, which is particularly important for the case of gels, melts and concentrated polymer solutions. A section on the influence of macroscopic chirality is included as well.
منابع مشابه
Electrically driven director-rotation of swollen nematic elastomers as revealed by polarized Fourier transform infrared spectroscopy.
We have investigated the director reorientation behavior of unconstrained nematic gels (nematic elastomer swollen by low molecular mass liquid crystals) under electric fields by means of polarized Fourier transform infrared (FTIR) spectroscopy. The polarized FTIR reveals that the director rotates about the (y) axis normal to the original director ( x axis) and field directions ( z axis), and th...
متن کاملRotational invariance and Goldstone modes in nematic elastomers and gels
We investigate the symmetries of elastomers and gels cross-linked in a nematic state. The coupling between the local nematic order parameter and an applied deformation leads to a class of uniform deformations which cost no elastic energy, when accompanied by a given rotation of the nematic director; this is a specific realization of a class of soft modes originally proposed, on symmetry argumen...
متن کاملDirector Dynamics in Liquid-Crystal Physical Gels
Nematic liquid-crystal (LC) elastomers and gels have a rubbery polymer network coupled to the nematic director. While LC elastomers show a single, non-hydrodynamic relaxation mode, dynamic light-scattering studies of self-assembled liquid-crystal gels reveal orientational fluctuations that relax over a broad time scale. At short times, the relaxation dynamics exhibit hydrodynamic behavior. In c...
متن کاملNematic elastomers: from a microscopic model to macroscopic elasticity theory.
A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 39 11 شماره
صفحات -
تاریخ انتشار 2016